
"But my tests passed!"
Exploring C++ Test Suite Weaknesses with Mutation Testing

"I am the proof that your C++

code's intent is fragile. Try to

catch me, or I'll drag your quality

down into the abyss!"

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

About myself

▪ Personal Background

▪ Nico Eichhorn from Stuttgart

▪ Married, father of 3

▪ Studied Applied Mathematics (Master Thesis at Bosch CR)

▪ Professional Experience

▪ 12 years of C++ development

▪ Visualization at High-Performance Computing Center Stuttgart

▪ Automated test systems for semiconductors near Stuttgart

▪ At Bosch since 2018 developing ADAS software

▪ Personal Motivation

▪ Properly testing C++ code is crucial for robust software development

▪ High coverage doesn't automatically mean your tests are effective.

▪ Mutation testing can help to find an answer to” what are good tests?”

www.linkedin.com/in/nico-eichhorn-dev

http://www.linkedin.com/in/nico-eichhorn-dev
http://www.linkedin.com/in/nico-eichhorn-dev
http://www.linkedin.com/in/nico-eichhorn-dev
http://www.linkedin.com/in/nico-eichhorn-dev
http://www.linkedin.com/in/nico-eichhorn-dev

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What do we do at Bosch?

▪ Automotive software development @ Bosch

▪ We develop ADAS software stacks for assisted and automated

driving and parking

▪ Part of a team which develops a central library with common

functionality used by domain specific software components

▪ Basically, a standard template library to be used in automotive

software where special safety regulations must be met

▪ Really excited for C++26 as it will offer more ways of making C++

safer

What is mutation testing?

1

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is mutation testing?
Definition & Key Concepts

▪ Mutation Testing is a software testing technique

used to evaluate the quality of a test suite by

introducing small changes (mutations) to the code

and checking if the existing tests can detect these
changes.

▪ Mutants:

Variants of the original program created by making

small modifications, such as changing operators,
altering constants, or modifying control flow.

▪ Mutation Operators:

Rules used to generate mutants. Common operators
include replacing arithmetic operators, logical
operators, and relational operators.

▪ Test Suite Evaluation:

The effectiveness of a test suite is measured by its
ability to detect mutants. A high-quality test suite
should catch most, if not all, mutants.

6

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is the difference to fuzz testing?
What is mutation testing

▪ Purpose:

➢ Mutation Testing: Evaluates test suite effectiveness by introducing small code changes (mutations) and checking if existing tests detect
them.

➢ Fuzz Testing: Discovers program vulnerabilities, crashes, or unexpected behavior by feeding semi-random, malformed, or unexpected
input data.

▪ Process:

➢ Mutation Testing: Modifies the code. Reruns the existing test suite to detect these changes.

➢ Fuzz Testing: Generates and feeds input data to the program to observe behavior.

▪ Outcome:

➢ Mutation Testing: Ensures test robustness, highlighting gaps in test coverage or assert statements.

➢ Fuzz Testing: Identifies program defects, security vulnerabilities, or unexpected behavior caused by anomalous inputs.

7

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Process
What is mutation testing?

1. Generate Mutants: Create multiple versions of the original code with small changes.

2. Run Tests: Execute the existing test suite against each mutant.

3. Analyze Results:

➢ Killed Mutants: Mutants that cause tests to fail, indicating the test suite is effective.

➢ Surviving Mutants: Mutants that pass all tests, suggesting gaps in the test suite.

8

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is mutation testing?
Benefits & Challenges

▪ Improves Test Quality: Identifies weaknesses in

the test suite, ensuring it covers more edge cases

and scenarios.

▪ Increases Confidence: Provides a higher level of

assurance that the code is robust and well-tested.

▪ Encourages Better Testing Practices: Promotes
the development of more comprehensive and

effective tests.

▪ Performance Overhead: Running tests on

multiple mutants can be time-consuming and

resource-intensive.

▪ Complexity: Managing and analyzing many

mutants can be complex.

▪ Tool Support: Requires specialized tools to
automate the generation and testing of mutants.

9

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What is mutation testing?
Tools

▪ Dextool Mutate

▪ MuCPP

▪ mull

▪ Universal Mutator

▪ Other examples for different languages:

➢ Java: PIT/Pitest

➢ Python: MutPy/Cosmic Ray

➢ Javascript/Typescript: Stryker

➢ Rust: Mutagen

▪ Mull:

➢ Uses clang for parsing and AST generation

➢ Leverages clang's tooling for code analysis and
transformation

➢ Generates mutants by applying these operators to
the AST.

➢ Compiles all mutants using clang into a binary.

➢ Ensures mutants are syntactically correct and
executable.

➢ Executes the test suite against each mutant.

➢ Isolates test runs to ensure accurate results.

10

https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate
https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate
https://ucase.uca.es/mucpp/
https://ucase.uca.es/mucpp/
https://github.com/mull-project/mull
https://github.com/mull-project/mull
https://github.com/agroce/universalmutator
https://github.com/agroce/universalmutator

Finding Test Suite Weaknesses

mutation testing 32-bit floating point type addition

2

11

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What are we testing?
Case study

▪ A simple algorithm which emulates addition for 32-bit floating point values as defined in IEEE754

▪ Special cases:

➢ NaN: Invalid operation e.g. sqrt(-1)

➢ Infinity: e.g. division by zero

➢ Largest positive subnormal

▪ Simplification: subnormal results are treated as 0

12

Created with https://evanw.github.io/float-toy/

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

What are we testing
Case study

▪ Inputs and output are 32-bit unsigned integers representing 32-bit floats

▪ The algorithm is implemented as following:

1. Special case filtering (NaN / infinity)

2. Operand preparation + exponent alignment

3. Signed mantissa combine (add/subtract + cancellation)

4. Normalization (overflow / underflow handling)

5. Repack and finalize (including overflow to infinity)

13

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Preparing
Case study

▪ Install from packages provided by mull project

➢ https://github.com/mull-project/mull

▪ Create a config

▪ All targets need to be compiled with the following flags:

➢ -fpass-plugin=/usr/lib/mull-ir-frontend-18

▪ specifies a plugin for the pass manager, the mull frontend in this case

▪ Will "infect" the code with mutants

➢ -grecord-command-line

▪ to record the command line options used during compilation in the debug information

14

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Available Mutators
Case Study

▪ There are numerous groups to choose from, such as:

− cxx_arithmetic: Modifies fundamental mathematical calculations.

▪ Example: cxx_add_to_sub (Changes a + b to a - b)

− cxx_comparison: Alters how values are compared, including boundary conditions.

▪ Example: cxx_eq_to_ne (Changes a == b to a != b)

− cxx_assignment: Targets various forms of value assignment and initialization.

▪ Example: cxx_add_assign_to_sub_assign (Changes a += b to a -= b)

− cxx_increment / cxx_decrement: Flips the direction of unary increment/decrement operations.

▪ Example: cxx_pre_inc_to_pre_dec (Changes ++x to --x)

− cxx_calls: Manipulates function calls, often removing their effects.

▪ Example: cxx_remove_void_call (Removes a call to a void function)

15

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Running mull
Case study

… some output ...

▪ 7 mutants survived...

16

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Case study
Analyzing results

▪ Every line represents a survived mutant

▪ A potential opportunity for improvement in tests

17

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Case study
Analyzing results

▪ What does this mean?

➢ With this mutation zero is treated as subnormal and exponent is set to 1

➢ Later this change is "corrected" when exponents and mantissas are aligned for addition

➢ If we test zero added to zero, no correction will occur, and the test would fail

18

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Case study
Analyzing results

▪ changes >= to > code block for alignment

of mantissas.

▪ Equality means bit-shift by 0 bits

▪ Both branches can do this

▪ We cannot handle this mutant

19

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Case study
Analyzing results

▪ Mantissa is not normalized anymore

▪ Very specific bit-pattern to test

➢ Triggers mantissa overflow after implicit

addition of leading 1 for mantissa

21

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Case study
Analyzing results

▪ Again, normalization for mantissa overflow

▪ 8-Bit exponent

➢ 0xFE: max value for regular numbers

➢ 0xFF: ±NaN / ±inf handled beforehand

22

▪ Refactoring needed to handle this mutant

▪ But is this better?

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Demo time
Case study

https://github.com/nicoeich87/MutationTesting

23

https://github.com/nicoeich87/MutationTesting

Conclusion

3

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Summary
Conclusion

▪ Mutation testing can help to improve test quality

➢ Found possible improvements for emulated 32-bit float addition test

➢ Almost perfect coverage, yet we found that some (edge-case) test cases missing

▪ Can easily added to existing tests

➢ Proper configuration is important to avoid unwanted noise

▪ Analysis can be very time consuming

➢ AI can help to understand and fix findings, however not always a quicker way.

25

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

© Robert Bosch GmbH 2024. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Final thoughts
Conclusion

▪ Can be used for individual testing / examination of tests and algorithms.

➢ Great for code with a high cyclomatic complexity

▪ Easy to setup and use but some caveats

➢ More time consuming as analysis and execution is more complex

➢ Can only mutate runtime code (no consteval)

▪ For usage in CI analysis of git diffs can be a useful addition

➢ Several ways of integrating in pipelines

▪ If you want to really improve your tests you should try mutation testing

26

Thank you

	Default Section
	Slide 1: "But my tests passed!"
	Slide 2
	Slide 3: About myself
	Slide 4: What do we do at Bosch?
	Slide 5: 1
	Slide 6: Definition & Key Concepts
	Slide 7: What is the difference to fuzz testing?
	Slide 8: Process
	Slide 9: Benefits & Challenges
	Slide 10: Tools
	Slide 11: 2
	Slide 12: What are we testing?
	Slide 13: What are we testing
	Slide 14: Preparing
	Slide 15: Available Mutators
	Slide 16: Running mull
	Slide 17: Analyzing results
	Slide 18: Analyzing results
	Slide 19: Analyzing results
	Slide 21: Analyzing results
	Slide 22: Analyzing results
	Slide 23: Demo time
	Slide 24: 3
	Slide 25: Summary
	Slide 26: Final thoughts
	Slide 27: Thank you

