"But my tests passed!”

Exploring C++ Test Suite Weaknesses with Mutation Testing

BOSCH

MUTANTS RISING
FROM C++ CODE

‘using namespace

1nt main() {
cout <<"Hello,

<<endl;

"I am the proof that your C++
code's intent is fragile. Try to
catch me, or I'll drag your quality
down into the abyss!"

BOSCH

About myself

= Personal Background
= Nico Eichhorn from Stuttgart
= Married, father of 3
= Studied Applied Mathematics (Master Thesis at Bosch CR)

= Professional Experience

= 12 years of C++ development
= Visualization at High-Performance Computing Center Stuttgart
= Automated test systems for semiconductors near Stuttgart

= At Bosch since 2018 developing ADAS software

= Personal Motivation
= Properly testing C++ code is crucial for robust software development
= High coverage doesn't automatically mean your tests are effective.

= Mutation testing can help to find an answer to” what are good tests?”

www.linkedin.com/in/nico-eichhorn-dev

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

http://www.linkedin.com/in/nico-eichhorn-dev
http://www.linkedin.com/in/nico-eichhorn-dev
http://www.linkedin.com/in/nico-eichhorn-dev
http://www.linkedin.com/in/nico-eichhorn-dev
http://www.linkedin.com/in/nico-eichhorn-dev

What do we do at Bosch?

= Automotive software development @ Bosch

= We develop ADAS software stacks for assisted and automated
driving and parking

= Part of a team which develops a central library with common
functionality used by domain specific software components ¢ -

= Basically, a standard template library to be used in automotive
software where special safety regulations must be met

= Really excited for C++26 as it will offer more ways of making C++
safer

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing BOSCH

1

What is mutation testing?

BOSCH

What is mutation testing?
Definition & Key Concepts

= Mutation Testing is a software testing technique = Mutants:
used to evaluate the quality of a test suite by Variants of the original program created by making
introducing small changes (mutations) to the code small modifications, such as changing operators,
and checking if the existing tests can detect these altering constants, or modifying control flow.
changes. = Mutation Operators:

Rules used to generate mutants. Common operators
include replacing arithmetic operators, logical
operators, and relational operators.

= Test Suite Evaluation:

The effectiveness of a test suite is measured by its
ability to detect mutants. A high-quality test suite
should catch most, if not all, mutants.

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH

Mutation testing

What is mutation testing
What is the difference to fuzz testing?

= Purpose:

» Mutation Testing: Evaluates test suite effectiveness by introducing small code changes (mutations) and checking if existing tests detect
them.

» Fuzz Testing: Discovers program vulnerabilities, crashes, or unexpected behavior by feeding semi-random, malformed, or unexpected
input data.

= Process:
» Mutation Testing: Modifies the code. Reruns the existing test suite to detect these changes.

» Fuzz Testing: Generates and feeds input data to the program to observe behavior.
= Qutcome:

» Mutation Testing: Ensures test robustness, highlighting gaps in test coverage or assert statements.

» Fuzz Testing: |dentifies program defects, security vulnerabilities, or unexpected behavior caused by anomalous inputs.

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

What is mutation testing?
Process

1. Generate Mutants: Create multiple versions of the original code with small changes.
2. Run Tests: Execute the existing test suite against each mutant.

3. Analyze Results:
» Killed Mutants: Mutants that cause tests to fail, indicating the test suite is effective.
» Surviving Mutants: Mutants that pass all tests, suggesting gaps in the test suite.

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

What is mutation testing?
Benefits & Challenges

= Improves Test Quality: Identifies weaknesses in = Performance Overhead: Running tests on
the test suite, ensuring it covers more edge cases multiple mutants can be time-consuming and
and scenarios. resource-intensive.

* Increases Confidence: Provides a higher level of = Complexity: Managing and analyzing many
assurance that the code is robust and well-tested. mutants can be complex.

= Encourages Better Testing Practices: Promotes = Tool Support: Requires specialized tools to
the development of more comprehensive and automate the generation and testing of mutants.

effective tests.

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

What is mutation testing?
Tools

Dextool Mutate
MuCPP

= mull

Universal Mutator

» Java: PIT/Pitest

» Python: MutPy/Cosmic Ray
» Javascript/Typescript: Stryker
» Rust: Mutagen

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08
Mutation testing

Other examples for different languages:

= Mull:

YV VYV

Y

A\

Uses clang for parsing and AST generation

Leverages clang's tooling for code analysis and
transformation

Generates mutants by applying these operators to
the AST.

Compiles all mutants using clang into a binary.

Ensures mutants are syntactically correct and
executable.

Executes the test suite against each mutant.

Isolates test runs to ensure accurate results.

BOSCH

https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate
https://github.com/joakim-brannstrom/dextool/tree/master/plugin/mutate
https://ucase.uca.es/mucpp/
https://ucase.uca.es/mucpp/
https://github.com/mull-project/mull
https://github.com/mull-project/mull
https://github.com/agroce/universalmutator
https://github.com/agroce/universalmutator

Finding Test Suite Weaknesses

mutation testing 32-bit floating point type addition

1 BOSCH

Case study
What are we testing?

= Asimple algorithm which emulates addition for 32-bit floating point values as defined in IEEE754

3231 3029282726252423222120191817161514131211109 8 7 6 5 4 3 2 1
o|1/o|/o|o|o|o|o|o|1|0|0|1|0|0|1|0|O(O|O|2(1(2|1|1|1|0|1|2|0|1]1] = Ox40490FDB

1 x 2! x 1.5707964 = 3.1415927

323130292827262524232221201918171615141312111098 76 54 3 21

m Special cases: [o]1]1]1]1]1]1]1]1]1]0]0]o]0]0]0]o[o]o]o]o]o]o]o]o]o[o[olo[o[o]o] = Ox7FC0O0000

» NaN: Invalid operation e.g. sqrt(-1) ll * 2= x [= NaN

323130292827262524232221201918171615141312111098 7654321

[o]1]1]1]1]1]1]2][1]0]o]o]o]o]o]0[o[o]o]o]o]o]o]o]o]o]o[ojo[oo]o] = Ox7F800000
» Infinity: e.g. division by zero 1 x 2% x 1 = Infinity

32313029282726252423222120191817161514131211109 8 76 54321

[o]oJo]o]o]o]o]o]ola]a[a]2]2]2]a]a]a]a]2]2]2]a]2]a]a[a[1[2]2]2]a] = OxOO7FFFFF
> Largest positive subnormal 1 x 21% x 09999999 = 1.1754942e-38

= Simplification: subnormal results are treated as O Created with https://evanw.github.io/float-toy/

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

Case study
What are we testing

" |nputs and output are 32-bit unsigned integers representing 32-bit floats

* The algorithm is implemented as following:
1. Special case filtering (NaN / infinity)

2. Operand preparation + exponent alignment
3. Signed mantissa combine (add/subtract + cancellation)
4. Normalization (overflow / underflow handling)

5. Repack and finalize (including overflow to infinity)

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

Case study

Preparmg mutators:
cXX_bitwise
= |nstall from packages provided by mull project cXX_comparison
> https://github.com/mull-project/mull cxx_arithmetic

cXX_boundary

cxX_calls
excludePaths:
- gtest
- gmock
- test

= Create a config

= All targets need to be compiled with the following flags:

» -fpass-plugin=/usr/lib/mull-ir-frontend-18
= specifies a plugin for the pass manager, the mull frontend in this case
= Will "infect" the code with mutants

» -grecord-command-line

= torecord the command line options used during compilation in the debug information

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing BOSCH

Case Study
Available Mutators

= There are numerous groups to choose from, such as:

cxx_arithmetic: Modifies fundamental mathematical calculations.

cxx_comparison: Alters how values are compared, including boundary conditions.

cxx_assignment: Targets various forms of value assignment and initialization.

cxx_increment / cxx_decrement: Flips the direction of unary increment/decrement operations.

Example: cxx_add _to sub (Changesa + btoa - b)

Example: cxx_eq_to ne(Changesa == btoa != b)

Example: cxx_add_assign to sub assign (Changesa += btoa -= b)

Example: cxx_pre_inc_to_pre_dec (Changes ++Xx to --X)

cxx_calls: Manipulates function calls, often removing their effects.

Example: cxx_remove_void call (Removes a call to a void function)

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08

Mutation testing

BOSCH

Case study
Running mull

mull-runner-18 test/mainTest
[info] Using config /workspace/mull.yml
[warning] Could not find dynamic library: libstdc++.50.6
[warning] Could not find dynamic library: libm.so.6
[warning] Could not find dynamic library: libgcc_s.so.1l
[warning] Could not find dynamic library: libc.so0.6
[info] Warm up run (threads: 1)

[
[info] Extracting coverage information (threads: 1)

[
[info] Filter mutants (threads: 1)

[
[info] Baseline run (threads: 1)

[
[info] Running mutants (threads: 16)

[

... some output ...

[info] Mutation score: 87%
[info] Total execution time: 4626ms

[info] Surviving mutants: 7

= 7 mutants survived...

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH

Mutation testing

Case study
Analyzing results

/workspace/inc/utils.hpp:103:27: warning: Survived: Replaced != with == [cxx_ne_to_eq]
if(expA == 0 & mantA != 0)

/workspace/inc/utils.hpp:112:27: warning: Survived: Replaced != with == [cxx_ne_to_eq]
if(expB == 0 & mantB != 0)

~

/workspace/inc/utils.hpp:124:13: warning: Survived: Replaced > with >= [cxx_gt_to_ge]
if(expA > expB)

= Every line represents a survived mutant

/workspace/inc/utils.hpp:129:18: warning: Survived: Replaced > with >= [cxx_gt_to_ge]
else if(expB > expA)
g = A potential opportunity for improvement in tests
/workspace/inc/utils.hpp:178:22: warning: Survived: Replaced >= with > [cxx_ge_to_gt]
while(resultMant >= 0x1000000) // Handle overflow
/workspace/inc/utils.hpp:181:22: warning: Survived: Replaced < with <= [cxx_lt_to_le]
if(resultExp < 255) // Prevent overflow to infinity

/workspace/inc/utils.hpp:188:22: warning: Survived: Replaced > with >= [cxx_gt_to_ge]
if(resultExp > @) // Only normalize if exponent is non-zero

Filename Function Coverage Line Coverage Region Coverage Branch Coverage
workspace/inc/utils.hpp 100.00% (1/1) 100.00% (120/120) 100.00% (73/73) 96.55% (56/58)
Totals 100.00% (1/1) 100.00% (120/120) 100.00% (73/73) 96.55% (56/58)

Generated by llvm-cov -- llvm version 18.1.3

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

Case study
Analyzing results

[info] Survived mutants (7/56):
/workspace/inc/utils.hpp:103:27: warning: Survived: Replaced != with == [cxx_ne_to_eq]
if(expA == 0 && mantA != 0)

A

/workspace/inc/utils.hpp:112:27: warning: Survived: Replaced !'= with == [cxx_ne_to_eq]
if(expB == 0 && mantB != 0)

~

= What does this mean?
» With this mutation zero is treated as subnormal and exponent is set to 1
» Later this change is "corrected" when exponents and mantissas are aligned for addition

> If we test zero added to zero, no correction will occur, and the test would fail

TEST(EmulateFloatAdditionTest, ZeroPlusZero)
{

uint32_t zerol floatToBits(0.0F);
uint32_t zero2 = floatToBits(0.0F);

uint32_t resultZero = emulateFloatAddition(zerol, zero2);
EXPECT_FLOAT_EQ(bitsToFloat(resultZero), 0.F);
EXPECT_EQ(resultZero, 0x00000000);

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

Case study
Analyzing results

/workspace/inc/utils.hpp:124:13: warning: Survived: Replaced > with >= [cxx_gt_to_ge]
if(expA > expB)

A

/workspace/inc/utils.hpp:129:18: warning: Survived: Replaced > with >= [cxx_gt_to_ge]

else if(expB > expA)

~

= changes >=to > code block for alignment
of mantissas.

= Equality means bit-shift by O bits

= Both branches can do this

= \We cannot handle this mutant

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08
Mutation testing

1f(expA > expB)

{

}

mantB >>= (expA - expB);
expB = expA;

else i1f(expB > expA)

{

mantA >>= (expB - expA);
expA = expB;

BOSCH

Case study
Analyzing results

/workspace/inc/utils.hpp:178:22: warning: Survived: Replaced >= with > [cxx_ge_to_gt]

while(resultMant >= 0x1000000) // Handle overflow

A

= Mantissa is not normalized anymore
TEST(EmulateFloatAdditionTest, ExponentExactly254)
{

uint32_t a = Ox7F000000U;

= Very specific bit-pattern to test Jint32 t b = Ox7FO00808L-

32 313029 282726252423222120191817161514131211109 8 7 6 54 3 21
o[x[s[:[x[x[o[o[o]o[o[o[oo]o[o[ofofo[o[oolfoeloeloaldl = 0x7F000000

uint32_t result = emulateFloatAddition(a,
1 x 2?7 x 1 = 1.7014118e+38

EXPECT_EQ(result, 0x7F800000U);

» Triggers mantissa overflow after implicit
addition of leading 1 for mantissa

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

Case study
Analyzing results

/workspace/inc/utils.hpp:181:22: warning: Survived: Replaced < with <= [cxx_1t_to_le]

if(resultExp < 255) // Prevent overflow to infinity

~

= Again, normalization for mantissa overflow = Refactoring needed to handle this mutant

= 8-Bit exponent
» OxFE: max value for regular numbers

» OxFF: +NaN / zinf handled beforehand :
/ if(resultExp <= 254)

= Butis this better?

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

Case study
Demo time

https://github.com/nicoeich87/MutationTesting

23 Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

https://github.com/nicoeich87/MutationTesting

Conclusion

BOSCH

Conclusion
Summary

= Mutation testing can help to improve test quality
» Found possible improvements for emulated 32-bit float addition test

» Almost perfect coverage, yet we found that some (edge-case) test cases missing

= (Can easily added to existing tests

» Proper configuration is important to avoid unwanted noise

= Analysis can be very time consuming

» Al can help to understand and fix findings, however not always a quicker way.

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

Conclusion
Final thoughts

= Can be used for individual testing / examination of tests and algorithms.

» Great for code with a high cyclomatic complexity

= Easy to setup and use but some caveats
» More time consuming as analysis and execution is more complex

» Can only mutate runtime code (no consteval)

= For usage in Cl analysis of git diffs can be a useful addition

» Several ways of integrating in pipelines

= |f you want to really improve your tests you should try mutation testing

Cross-Domain Computing Solutions | Nico Eichhorn | 2025-11-08 BOSCH
Mutation testing

Thank you

BOSCH

	Default Section
	Slide 1: "But my tests passed!"
	Slide 2
	Slide 3: About myself
	Slide 4: What do we do at Bosch?
	Slide 5: 1
	Slide 6: Definition & Key Concepts
	Slide 7: What is the difference to fuzz testing?
	Slide 8: Process
	Slide 9: Benefits & Challenges
	Slide 10: Tools
	Slide 11: 2
	Slide 12: What are we testing?
	Slide 13: What are we testing
	Slide 14: Preparing
	Slide 15: Available Mutators
	Slide 16: Running mull
	Slide 17: Analyzing results
	Slide 18: Analyzing results
	Slide 19: Analyzing results
	Slide 21: Analyzing results
	Slide 22: Analyzing results
	Slide 23: Demo time
	Slide 24: 3
	Slide 25: Summary
	Slide 26: Final thoughts
	Slide 27: Thank you

